Continuous-Time Multidimensional Walks as an Integrable Model


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

We consider continuous-time random walks on multidimensional symplectic lattices. It is shown that the generating functions of random walks and the transition amplitudes of continuous-time quantum walks can be expressed through dynamical correlation functions of an exactly solvable model describing strongly correlated bosons on a chain, the so-called phase model. The number of random lattice paths with a fixed number of steps connecting the starting and ending points on the multidimensional lattice is expressed through solutions of the Bethe equations of the phase model. Its asymptotics is obtained in the limit of a large number of steps.

Об авторах

N. Bogoliubov

St.Petersburg Department of Steklov Institute of Mathematics, ITMO University

Автор, ответственный за переписку.
Email: bogoliub@yahoo.com
Россия, St.Petersburg

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Springer Science+Business Media, LLC, part of Springer Nature, 2019

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).