Justification of a Wavelet-Based Integral Formula for Solutions of the Wave Equation


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

An integral representation of solutions of the wave equation obtained earlier is studied. The integrand contains weighted localized solutions of the wave equation that depend on parameters, which are variables of integration. Dependent on parameters, a family of localized solutions is constructed from one solution by means of transformations of shift, scaling, and the Lorentz transform. Sufficient conditions are derived, which ensure the pointwise convergence of the obtained improper integral in the space of parameters. The convergence of this integral in ℒ2 norm is proved as well. Bibliography: 22 titles.

Об авторах

E. Gorodnitskiy

St.Petersburg State University

Автор, ответственный за переписку.
Email: eugy@yandex.ru
Россия, St.Petersburg

M. Perel

St.Petersburg State University

Email: eugy@yandex.ru
Россия, St.Petersburg

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Springer Science+Business Media, LLC, part of Springer Nature, 2019

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).