Large Deviations for Level Sets of a Branching Brownian Motion and Gaussian Free Fields
- Авторы: Aïdékon E.1, Hu Y.2, Shi Z.1
-
Учреждения:
- LPMA, Université Pierre et Marie Curie
- LAGA, Université Paris XIII
- Выпуск: Том 238, № 4 (2019)
- Страницы: 348-365
- Раздел: Article
- URL: https://journals.rcsi.science/1072-3374/article/view/242532
- DOI: https://doi.org/10.1007/s10958-019-04243-8
- ID: 242532
Цитировать
Аннотация
We study deviation probabilities for the number of high positioned particles in branching Brownian motion and confirm a conjecture of Derrida and Shi. We also solve the corresponding problem for the two-dimensional discrete Gaussian free field. Our method relies on an elementary inequality for inhomogeneous Galton–Watson processes.
Об авторах
E. Aïdékon
LPMA, Université Pierre et Marie Curie
Автор, ответственный за переписку.
Email: elie.aidekon@upmc.fr
Франция, Paris
Yueyun Hu
LAGA, Université Paris XIII
Email: elie.aidekon@upmc.fr
Франция, Villetaneuse
Zhan Shi
LPMA, Université Pierre et Marie Curie
Email: elie.aidekon@upmc.fr
Франция, Paris
Дополнительные файлы
