Antiplane Shear of an Elastic Body with Elliptic Inclusions Under the Conditions of Imperfect Contact on the Interfaces


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

We study the problem of аntiplane shear of an elastic body containing a finite array of arbitrarily located and oriented elliptic inclusions under the conditions of imperfect mechanical contact on the interfaces. The analytic solution of the problem is obtained by the method of multipole expansions with the use of the technique of complex potentials. By expanding the disturbances of the field of displacements caused by inclusions in a series in the system of elliptic harmonics and using the formulas for their reexpansion and exact validity of all contact conditions, we reduce the boundary-value problem of the theory of elasticity to an infinite system of linear algebraic equations. It is also proved that the reduction method is applicable to the indicated system, the rate of convergence of the solution is investigated, and the accumulated results are compared with the data available from the literature. The presented numerical results of parametric investigations reveal the presence of a strong dependence of stress concentration on the conditions of contact on the interfaces, as well as on the sizes, shapes, and relative positions of the inclusions.

Об авторах

V. Chernobai

Bakul Institute for Superhard Materials, Ukrainian National Academy of Science

Email: Jade.Santos@springer.com
Украина, Kyiv

V. Kushch

Bakul Institute for Superhard Materials, Ukrainian National Academy of Science

Email: Jade.Santos@springer.com
Украина, Kyiv

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Springer Science+Business Media, LLC, part of Springer Nature, 2019

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).