A Comparative Study of Robust and Stable Estimates of Multivariate Location


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

This work is concerned with the comparative analysis of a variety of robust estimates of location under the generalized Gaussian and the Student t- and the Tukey gross-error distributions in the univariate and multivariate cases. The chosen set of estimates comprises the sample mean, sample median, classical robust Maronna, Huber, and Hampel M-estimates, Meshalkin–Shurygin stable M-estimates with redescending score functions, and a low-complexity two-step estimate with the preliminary rejection of outliers by the Tukey boxplot rule followed by the use of the sample mean to the cleaned data — almost all of them are examined in the univariate and multivariate versions. The estimate performance is evaluated by efficiency, bias, and mean squared error. For univariate distributions with light and heavy tails, the best results are exhibited by the Huber, Hampel, and Meshalkin–Shurygin and two-step estimates of location. In the multivariate case, the Huber and two-step estimates perform best.

Об авторах

G. Shevlyakov

Peter the Great St. Petersburg Polytechnic University

Автор, ответственный за переписку.
Email: georgy.shevlyakov@phmf.spbstu.ru
Россия, St. Petersburg

A.A. Shagal

EPAM, St. Petersburg Branch

Email: georgy.shevlyakov@phmf.spbstu.ru
Россия, St. Petersburg

V. Shin

Gyeongsang National University

Email: georgy.shevlyakov@phmf.spbstu.ru
Республика Корея, Chinju

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Springer Science+Business Media, LLC, part of Springer Nature, 2019

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).