Bayesian Variance-Stabilizing Kernel Density Estimation Using Conjugate Prior


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Kernel-type density or regression estimator does not produce a constant estimator variance over the domain. To correct this problem, K. Nishida and Y. Kanazawa (2011, 2015) proposed a variance-stabilizing (VS) local variable bandwidth for kernel regression estimators. K. Nishida (2017) proposed another strategy to construct VS local linear regression estimator using a convex combination of three skewing estimators proposed by Choi and Hall (1998). In this study, we show that variance stabilization can be accomplished by a Bayesian approach in the case of kernel density estimator using conjugate prior.

Об авторах

K. Nishida

General Education Center, Hyogo University of Health Sciences

Автор, ответственный за переписку.
Email: kiheiji.nishida@gmail.com
Япония, 1-3-6, Minatojima, Chuo-ku, Kobe, Hyogo

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Springer Science+Business Media, LLC, part of Springer Nature, 2019

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).