Remarks on Quadratic Mappings


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

We present several results concerning the geometry and topology of quadratic mappings. The main attention is given to certain basic properties, namely, properness, surjectivity, stability, and topology of fibers. The structure of singular sets, discriminants, bifurcation diagrams, and Pareto sets is also discussed. After describing the setting and algebraic methods for computing the topological degree and Euler characteristic that are crucial for our approach, we concentrate on the study of quadratic endomorphisms and quadratic mappings into the plane. We begin by considering homogeneous quadratic endomorphisms of the plane and give criteria of properness and possible values of topological degree, as well as some geometric information about the structure of singular sets and discriminants. Next, we deal with analogs of the above results for proper quadratic endomorphisms in arbitrary dimension. In particular, we obtain an explicit estimate for the topological degree of quadratic endomorphism in terms of dimension and present examples showing that this estimate is exact. After this we discuss homogeneous quadratic mappings from ℝn into the plane and obtain a number of results on the Euler characteristic and topology of fibers. Finally, we derive some corollaries in the case of numerical range mapping of a complex square matrix.

Об авторах

G. Khimshiashvili

Ilia State University

Автор, ответственный за переписку.
Email: giorgi.khimshiashvili@iliauni.edu.ge
Грузия, Tbilisi

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Springer Science+Business Media, LLC, part of Springer Nature, 2019

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).