On Critical 3-Connected Graphs with Two Vertices of Degree 3. Part I
- Авторы: Pastor A.V.1
-
Учреждения:
- St. Petersburg Department of Steklov Institute of Mathematics and Peter the Great St. Petersburg Polytechnic University
- Выпуск: Том 236, № 5 (2019)
- Страницы: 532-541
- Раздел: Article
- URL: https://journals.rcsi.science/1072-3374/article/view/242262
- DOI: https://doi.org/10.1007/s10958-018-4131-3
- ID: 242262
Цитировать
Аннотация
A 3-connected graph G is said to be critical if for any vertex υ ∈ V (G) the graph G − υ is not 3-connected. Entringer and Slater proved that any critical 3-connected graph contains at least two vertices of degree 3. In this paper, a classification of critical 3-connected graphs with two vertices of degree 3 is given in the case where these vertices are adjacent. The case of nonadjacent vertices of degree 3 will be studied in the second part of the paper, which will be published later.
Об авторах
A. Pastor
St. Petersburg Department of Steklov Institute of Mathematics and Peter the Great St. Petersburg Polytechnic University
Автор, ответственный за переписку.
Email: pastor@pdmi.ras.ru
Россия, St. Petersburg
Дополнительные файлы
