Bifurcation Conditions for the Solutions of the Lyapunov Equation in a Hilbert Space
- Авторы: Panasenko E.V.1, Pokutnyi O.O.2
-
Учреждения:
- Zaporizhzhya National University
- Institute of Mathematics, Ukrainian National Academy of Sciences
- Выпуск: Том 236, № 3 (2019)
- Страницы: 313-332
- Раздел: Article
- URL: https://journals.rcsi.science/1072-3374/article/view/242215
- DOI: https://doi.org/10.1007/s10958-018-4113-5
- ID: 242215
Цитировать
Аннотация
We establish sufficient conditions for the bifurcation of solutions of the boundary-value problems for the Lyapunov equation in Hilbert spaces. The cases where the generating equation has or does not have solutions are analyzed. As an example, we consider the problem in the space l2 of sequences with matrices of countable dimensions.
Об авторах
E. Panasenko
Zaporizhzhya National University
Автор, ответственный за переписку.
Email: panasenko.yevgeniy@gmail.com
Украина, Zhukovs’kyi Str., 66, Zaporizhzhya, 69600
O. Pokutnyi
Institute of Mathematics, Ukrainian National Academy of Sciences
Email: panasenko.yevgeniy@gmail.com
Украина, Tereshchenkivs’ka Str., 3, Kyiv, 01004
Дополнительные файлы
