On Riesz Means of the Coefficients of Epstein’s Zeta Functions


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Let rk(n) denote the number of lattice points on a k-dimensional sphere of radius \( \sqrt{n} \). The generating function

\( {\zeta}_k(s)=\sum \limits_{n=1}^{\infty }{r}_k(n){n}^{-s},\kern0.5em k\ge 2, \)

is Epstein’s zeta function. The paper considers the Riesz mean of the type

\( {D}_{\rho}\left(x;{\zeta}_3\right)=\frac{1}{\Gamma \left(\rho +1\right)}\sum \limits_{n\le x}{\left(x-n\right)}^{\rho }{r}_3(n), \)

where ρ > 0; the error term Δρ(x; ζ3) is defined by

\( {D}_{\rho}\left(x;{\zeta}_3\right)=\frac{\uppi^{3/2}{x}^{\rho +3/2}}{\Gamma \left(\rho +5/2\right)}+\frac{x^{\rho }}{\Gamma \left(\rho +1\right)}{\zeta}_3(0)+{\Delta}_{\rho}\left(x;{\zeta}_3\right). \)

K. Chandrasekharan and R. Narasimhan (1962, MR25#3911) proved that

\( {\Delta}_{\rho}\left(x;{\zeta}_3\right)=\Big\{{\displaystyle \begin{array}{ll}O\Big({x}^{1/2+\rho /2\Big)}& \left(\rho >1\right),\\ {}{\Omega}_{\pm}\left({x}^{1/2+\rho /2}\right)& \left(\rho \ge 0\right).\end{array}} \)

In the present paper, it is proved that

\( {\Delta}_{\rho}\left(x;{\zeta}_3\right)=\Big\{{\displaystyle \begin{array}{ll}O\left(x\log x\right)& \left(\rho =1\right),\\ {}O\left({x}^{2/3+\rho /3+\varepsilon}\right)& \left(1/2<\rho <1\right),\\ {}O\left({x}^{3/4+\rho /4+\varepsilon}\right)& \left(0<\rho \le 1/2\right),\end{array}} \)

and the Riesz means of the coefficients of ζk(s), k ≥ 4, are studied.

Об авторах

O. Fomenko

St. Petersburg Department of the Steklov Mathematical Institute

Email: Jade.Santos@springer.com
Россия, St. Petersburg

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Springer Science+Business Media, LLC, part of Springer Nature, 2018

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).