An Inverse Factorial Series for a General Gamma Ratio and Related Properties of the Nørlund–Bernoulli Polynomials


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

The inverse factorial series expansion for the ratio of products of gamma functions whose arguments are linear functions of the variable is found. A recurrence relation for the coefficients in terms of the Nørlund–Bernoulli polynomials is provided, and the half-plane of convergence is determined. The results obtained naturally supplement a number of previous investigations of the gamma ratios, which began in the 1930-ies. The expansion obtained in this paper plays a crucial role in the study of the behavior of the delta-neutral Fox’s H-function in the neighborhood of its finite singular point. A particular case of the inverse factorial series expansion is used in deriving a possibly new identity for the Nørlund–Bernoulli polynomials.

Об авторах

D. Karp

Far Eastern Federal University and Institute of Applied Mathematics of the FEBRAS

Автор, ответственный за переписку.
Email: dimkrp@gmail.com
Россия, Vladivostok

E. Prilepkina

Far Eastern Federal University and Institute of Applied Mathematics of the FEBRAS

Email: dimkrp@gmail.com
Россия, Vladivostok

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Springer Science+Business Media, LLC, part of Springer Nature, 2018

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).