Group Ring Ideals Related to Reed–Muller Codes


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Reed–Muller codes are one of the most well-studied families of codes; however, there are till open problems regarding their structure. Recently a new ring-theoretic approach has emerged that provides a rather intuitive construction of these codes. This approach is centered around the notion of basic Reed–Muller codes. It is known that basic Reed–Muller codes ℳπ(m, k) over a prime field are powers of the radical RS of a corresponding group algebra and over a nonprime field there are no such equalities, except for trivial ones. In this paper, we consider the ideals ℜSπ(m, k) that arise while studying the inclusions of the basic codes and radical powers.

Об авторах

I. Tumaykin

Lomonosov Moscow State University

Автор, ответственный за переписку.
Email: itumaykin@gmail.com
Россия, Moscow

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Springer Science+Business Media, LLC, part of Springer Nature, 2018

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).