The Riesz Basis Property with Brackets for Dirac Systems with Summable Potentials


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

In the space ℍ = (L2[0, π])2, we study the Dirac operator \( {\mathrm{\mathcal{L}}}_{P,U} \) generated by the differential expression ℓP(y) = By′ + Py, where

\( B=\left(\begin{array}{cc}-i& 0\\ {}0& i\end{array}\right),\kern0.5em P(x)=\left(\begin{array}{cc}{p}_1(x)& {p}_2(x)\\ {}{p}_3(x)& {p}_4(x)\end{array}\right),\kern0.5em \mathbf{y}(x)=\left(\begin{array}{c}{y}_1(x)\\ {}{y}_2(x)\end{array}\right), \)

and the regular boundary conditions

\( U\left(\mathbf{y}\right)=\left(\begin{array}{cc}{u}_{11}& {u}_{12}\\ {}{u}_{21}& {u}_{22}\end{array}\right)\left(\begin{array}{c}{y}_1(0)\\ {}{y}_2(0)\end{array}\right)+\left(\begin{array}{cc}{u}_{13}& {u}_{14}\\ {}{u}_{23}& {u}_{24}\end{array}\right)\left(\begin{array}{c}{y}_1\left(\uppi \right)\\ {}{y}_2\left(\uppi \right)\end{array}\right)=0. \)

The elements of the matrix P are assumed to be complex-valued functions summable over [0, π]. We show that the spectrum of the operator \( {\mathrm{\mathcal{L}}}_{P,U} \) is discrete and consists of eigenvalues {λn}n ∈ ℤ such that \( {\uplambda}_n={\uplambda}_n^0+o(1) \) as |n| → ∞, where \( {\left\{{\uplambda}_n^0\right\}}_{n\in \mathrm{\mathbb{Z}}} \) is the spectrum of the operator \( {\mathrm{\mathcal{L}}}_{0,U} \) with zero potential and the same boundary conditions. If the boundary conditions are strongly regular, then the spectrum of the operator \( {\mathrm{\mathcal{L}}}_{P,U} \) is asymptotically simple. We show that the system of eigenfunctions and associate functions of the operator \( {\mathrm{\mathcal{L}}}_{P,U} \) forms a Riesz base in the space ℍ provided that the eigenfunctions are normed. If the boundary conditions are regular, but not strongly regular, then all eigenvalues of the operator \( {\mathrm{\mathcal{L}}}_{0,U} \) are double, all eigenvalues of the operator \( {\mathrm{\mathcal{L}}}_{P,U} \) are asymptotically double, and the system formed by the corresponding two-dimensional root subspaces of the operator \( {\mathrm{\mathcal{L}}}_{P,U} \) is a Riesz base of subspaces (Riesz base with brackets) in the space ℍ.

Об авторах

A. Savchuk

M. V. Lomonosov Moscow State University

Автор, ответственный за переписку.
Email: artem_savchuk@mail.ru
Россия, Moscow

I. Sadovnichaya

M. V. Lomonosov Moscow State University

Email: artem_savchuk@mail.ru
Россия, Moscow

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Springer Science+Business Media, LLC, part of Springer Nature, 2018

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).