Low-Dimensional and Multi-Dimensional Pendulums in Nonconservative Fields. Part 2
- Авторы: Shamolin M.V.1
-
Учреждения:
- Institute of Mechanics of the M. V. Lomonosov Moscow State University
- Выпуск: Том 233, № 3 (2018)
- Страницы: 301-397
- Раздел: Article
- URL: https://journals.rcsi.science/1072-3374/article/view/241560
- DOI: https://doi.org/10.1007/s10958-018-3934-6
- ID: 241560
Цитировать
Аннотация
In this review, we discuss new cases of integrable systems on the tangent bundles of finite-dimensional spheres. Such systems appear in the dynamics of multidimensional rigid bodies in non-conservative fields. These problems are described by systems with variable dissipation with zero mean. We found several new cases of integrability of equations of motion in terms of transcendental functions (in the sense of the classification of singularities) that can be expressed as finite combinations of elementary functions.
Об авторах
M. Shamolin
Institute of Mechanics of the M. V. Lomonosov Moscow State University
Автор, ответственный за переписку.
Email: shamolin@imec.msu.ru
Россия, Moscow
Дополнительные файлы
