Groups in Which the Normal Closures of Cyclic Subgroups Have Bounded Finite Hirsch–Zaitsev Rank


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

In this paper, we study generalized soluble groups with restriction on normal closures of cyclic subgroups. A group G is said to have finite Hirsch–Zaitsev rank if G has an ascending series whose factors are either infinite cyclic or periodic and if the number of infinite cyclic factors is finite. It is not hard to see that the number of infinite cyclic factors in each of such series is an invariant of a group G. This invariant is called the Hirsch–Zaitsev rank of G and will be denoted by rhz(G). We study the groups in which the normal closure of every cyclic subgroup has the Hirsch–Zaitsev rank at most b (b is some positive integer). For some natural restrictions we find a function k1(b) such that rhz([G/Tor(G),G/Tor(G)]) ≤ k1(b).

Об авторах

L. Kurdachenko

National University of Dnepropetrovsk

Автор, ответственный за переписку.
Email: lkurdachenko@i.ua
Украина, Dnepropetrovsk

N. Semko

National University of the State Tax Service of Ukraine

Email: lkurdachenko@i.ua
Украина, Irpin

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Springer Science+Business Media, LLC, part of Springer Nature, 2018

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).