On the Ultrasolvability of p-Extensions of an Abelian Group by a Cyclic Kernel


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

The paper contains a solution of A. V. Yakovlev’s problem in the embedding theory for p-extensions of odd order with a cyclic normal subgroup and an Abelian quotient group: for such nonsplit extensions there exists a realization for the quotient group as a Galois group over number fields such that the corresponding embedding problem is ultrasolvable (i.e., this embedding problem is solvable and has only fields as solutions). A solution for embedding problems of p-extensions of odd order with kernel of order p and with a quotient group that is represented by a direct product of its proper subgroups is also given – this is a generalization for p > 2 of an analogous result for p = 2 due to A. Ledet.

Об авторах

D. Kiselev

The Russian Foreign Trade Academy

Автор, ответственный за переписку.
Email: denmexmath@yandex.ru
Россия, Moscow

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Springer Science+Business Media, LLC, part of Springer Nature, 2018

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).