Regularity of Maximum Distance Minimizers


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

We study properties of sets having the minimum length (one-dimensional Hausdorff measure) in the class of closed connected sets Σ ⊂ ℝ2 satisfying the inequality maxyϵM dist (y, Σ) ≤ r for a given compact set M ⊂ ℝ2 and given r > 0. Such sets play the role of the shortest possible pipelines arriving at a distance at most r to every point of M where M is the set of customers of the pipeline.

In this paper, it is announced that every maximum distance minimizer is a union of finitely many curves having one-sided tangent lines at every point. This shows that a maximum distance minimizer is isotopic to a finite Steiner tree even for a “bad” compact set M, which distinguishes it from a solution of the Steiner problem (an example of a Steiner tree with infinitely many branching points can be found in a paper by Paolini, Stepanov, and Teplitskaya). Moreover, the angle between these lines at each point of a maximum distance minimizer is at least 2π/3. Also, we classify the behavior of a minimizer Σ in a neighborhood of any point of Σ. In fact, all the results are proved for a more general class of local minimizers.

Об авторах

Y. Teplitskaya

Chebyshev Laboratory, St.Petersburg State University

Автор, ответственный за переписку.
Email: janejashka@gmail.com
Россия, St.Petersburg

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Springer Science+Business Media, LLC, part of Springer Nature, 2018

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).