Boundary triples for integral systems on finite intervals


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Let P, Q, and W be real functions of bounded variation on [0, l], and let W be nondecreasing. The integral system

\( J\overrightarrow{f}(x)-J\overrightarrow{a}=\underset{0}{\overset{x}{\int }}\left(\begin{array}{cc}\uplambda dW- dQ& 0\\ {}0& dP\end{array}\right)\overrightarrow{f}(t),\kern1em J=\left(\begin{array}{cc}0& -1\\ {}1& 0\end{array}\right) \)

on a finite compact interval [0, l] was considered in [6]. The maximal and minimal linear relations Amax and Amin associated with the integral system (0.1) are studied in the Hilbert space L2(W). It is shown that the linear relation Amin is symmetric with deficiency indices n±(Amin) = 2 and Amax = \( {A}_{min}^{\ast }. \) Boundary triples for Amax are constructed, and the the corresponding Weyl functions are calculated.

Об авторах

Dmytro Strelnikov

Vasyl’ Stus Donetsk National University

Автор, ответственный за переписку.
Email: d.strelnikov@donnu.edu.ua
Украина, Vinnitsya

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Springer Science+Business Media, LLC, part of Springer Nature, 2018

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).