Boundary triples for integral systems on finite intervals
- Авторы: Strelnikov D.1
-
Учреждения:
- Vasyl’ Stus Donetsk National University
- Выпуск: Том 231, № 1 (2018)
- Страницы: 83-100
- Раздел: Article
- URL: https://journals.rcsi.science/1072-3374/article/view/241087
- DOI: https://doi.org/10.1007/s10958-018-3807-z
- ID: 241087
Цитировать
Аннотация
Let P, Q, and W be real functions of bounded variation on [0, l], and let W be nondecreasing. The integral system
on a finite compact interval [0, l] was considered in [6]. The maximal and minimal linear relations Amax and Amin associated with the integral system (0.1) are studied in the Hilbert space L2(W). It is shown that the linear relation Amin is symmetric with deficiency indices n±(Amin) = 2 and Amax = \( {A}_{min}^{\ast }. \) Boundary triples for Amax are constructed, and the the corresponding Weyl functions are calculated.
Ключевые слова
Об авторах
Dmytro Strelnikov
Vasyl’ Stus Donetsk National University
Автор, ответственный за переписку.
Email: d.strelnikov@donnu.edu.ua
Украина, Vinnitsya
Дополнительные файлы
