Quasielliptic Operators and Equations Not Solvable with Respect to the Higher Order Derivative
- Авторы: Demidenko G.V.1,2
-
Учреждения:
- Sobolev Institute of Mathematics SB RAS
- Novosibirsk State University
- Выпуск: Том 230, № 1 (2018)
- Страницы: 25-35
- Раздел: Article
- URL: https://journals.rcsi.science/1072-3374/article/view/240597
- DOI: https://doi.org/10.1007/s10958-018-3723-2
- ID: 240597
Цитировать
Аннотация
We consider a class of quasielliptic operators in Rn and establish the isomorphism property in special weighted Sobolev spaces. In more general weighted spaces, we obtain the unique solvability conditions for quasielliptic equations and prove estimates for solutions. Based on the obtained results, we study the solvability of the initial problem for equations that are not solvable with respect to the higher order derivative.
Об авторах
G. Demidenko
Sobolev Institute of Mathematics SB RAS; Novosibirsk State University
Автор, ответственный за переписку.
Email: demidenk@math.nsc.ru
Россия, 4, Akad. Koptyuga pr, Novosibirsk, 630090; 1, Pirogova St, Novosibirsk, 630090
Дополнительные файлы
