Arak’s Inequalities for the Generalized Arithmetic Progressions
- Авторы: Zaitsev A.Y.1
-
Учреждения:
- St. Petersburg Department of the Steklov Mathematical Institute, St. Petersburg State University
- Выпуск: Том 229, № 6 (2018)
- Страницы: 698-701
- Раздел: Article
- URL: https://journals.rcsi.science/1072-3374/article/view/240517
- DOI: https://doi.org/10.1007/s10958-018-3708-1
- ID: 240517
Цитировать
Аннотация
In 1980s, Arak has obtained powerful inequalities for the concentration functions of sums of independent random variables. Using these results, he has solved an old problem stated by Kolmogorov. In this paper, one of Arak’s results is modified to include generalized arithmetic progressions in the statement.
Об авторах
A. Zaitsev
St. Petersburg Department of the Steklov Mathematical Institute, St. Petersburg State University
Автор, ответственный за переписку.
Email: zaitsev@pdmi.ras.ru
Россия, St. Petersburg
Дополнительные файлы
