Properties of Some Extensions of the Quadratic Form of the Vector Laplace Operator


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

We consider the action of the quadratic form of the Laplace operator and its extensions in subspaces of linear combinations of the “transverse” and “longitudinal” functions with the fixed orbital momentum with respect to the coordinate origin. In the statement of the problem, it is required that the extensions obtained, after the transfer back to the space of vector functions, can be represented as simple limit expressions with two coefficients. We study the behavior of these coefficients with respect to the initial choice of the linear subspace. Bibliography: 5 titles.

Об авторах

T. Bolokhov

St.Petersburg Department of the Steklov Mathematical Institute

Автор, ответственный за переписку.
Email: timur@pdmi.ras.ru
Россия, St.Petersburg

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Springer Science+Business Media, LLC, part of Springer Nature, 2018

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).