On the problem of V. N. Dubinin for symmetric multiply connected domains
- Авторы: Vyhivska L.V.1
-
Учреждения:
- Institute of Mathematics of the NAS of Ukraine
- Выпуск: Том 229, № 1 (2018)
- Страницы: 108-113
- Раздел: Article
- URL: https://journals.rcsi.science/1072-3374/article/view/240382
- DOI: https://doi.org/10.1007/s10958-018-3665-8
- ID: 240382
Цитировать
Аннотация
Abstract
The problem of maximum of the functional
is considered. Here, \( \upgamma \in \left(0,n\right],{a}_0=0,\kern0.5em \left|{a}_k\right|=1,k=\overline{1,n},{a}_k\in {B}_k\subset \overline{\mathrm{\mathbb{C}}},\kern0.5em k=\overline{0,n},\kern0.5em {\left\{{B}_k\right\}}_{k=1}^n \) are pairwise non-overlapping domains, \( {\left\{{B}_k\right\}}_{k=0}^n \) are symmetric domains with respect to the unit circle, and r(B; a) is the inner radius of the domain \( B\subset \overline{\mathrm{\mathbb{C}}} \) with respect to the point a ∈ B. For γ = 1 and n ≥ 2, the problem was formulated as an open problem by V. N. Dubinin in 1994. L. V. Kovalev solved the Dubinin problem in 2000. The article deals with finding the maximum of the functional In(γ) for γ > 1.
Об авторах
Liudmyla Vyhivska
Institute of Mathematics of the NAS of Ukraine
Автор, ответственный за переписку.
Email: liudmylavygivska@ukr.net
Украина, Kyiv
Дополнительные файлы
