Convolution equations and mean-value theorems for solutions of linear elliptic equations with constant coefficients in the complex plane


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

In terms of the Bessel functions, we characterize smooth solutions of some convolution equations in the complex plane and prove a two-radius theorem for solutions of homogeneous linear elliptic equations with constant coefficients whose left-hand sides are representable in the form of a product of some non-negative integer powers of the complex differentiation operators and \( \overline{\partial} \).

Об авторах

Olga Trofymenko

Vasyl’ Stus Donetsk National University

Автор, ответственный за переписку.
Email: odtrofimenko@gmail.com
Украина, Vinnytsia

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Springer Science+Business Media, LLC, part of Springer Nature, 2018

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).