Convolution equations and mean-value theorems for solutions of linear elliptic equations with constant coefficients in the complex plane
- Авторы: Trofymenko O.D.1
-
Учреждения:
- Vasyl’ Stus Donetsk National University
- Выпуск: Том 229, № 1 (2018)
- Страницы: 96-107
- Раздел: Article
- URL: https://journals.rcsi.science/1072-3374/article/view/240377
- DOI: https://doi.org/10.1007/s10958-018-3664-9
- ID: 240377
Цитировать
Аннотация
In terms of the Bessel functions, we characterize smooth solutions of some convolution equations in the complex plane and prove a two-radius theorem for solutions of homogeneous linear elliptic equations with constant coefficients whose left-hand sides are representable in the form of a product of some non-negative integer powers of the complex differentiation operators ∂ and \( \overline{\partial} \).
Ключевые слова
Об авторах
Olga Trofymenko
Vasyl’ Stus Donetsk National University
Автор, ответственный за переписку.
Email: odtrofimenko@gmail.com
Украина, Vinnytsia
Дополнительные файлы
