Pseudospectral functions of various dimensions for symmetric systems with the maximal deficiency index


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

We consider the first-order symmetric system Jy − A(t)y = λΔ(t)y with n × n-matrix coefficients defined on an interval [a; b) with the regular endpoint a. It is assumed that the deficiency indices N± of the system satisfy the equality N_N+ = n. The main result is the parametrization of all pseudospectral functions σ(·) of any possible dimension n????≤ n in terms of a Nevanlinna parameter τ = {C0(λ),  C1(λ)}. Such parametrization is given by the linear-fractional transform

\( {m}_{\tau}\left(\uplambda \right)={\left({C}_0\left(\uplambda \right){w}_{11}\left(\uplambda \right)+{C}_1\left(\uplambda \right){w}_{21}\left(\uplambda \right)\right)}^{-1}\left({C}_0\left(\uplambda \right){w}_{12}\left(\uplambda \right)+{C}_1\left(\uplambda \right){w}_{22}\left(\uplambda \right)\right) \)

and the Stieltjes inversion formula for m???? (λ). We show that the matrix \( W\left(\uplambda \right)={\left({w}_{ij}\left(\uplambda \right)\right)}_{i,j=1}^2 \) has the properties similar to those of the resolvent matrix in the extension theory of symmetric operators. The obtained results develop the results by A. Sakhnovich; Arov and Dym; and Langer and Textorius.

Об авторах

Vadim Mogilevskii

V.G. Korolenko Poltava National Pedagogical University

Автор, ответственный за переписку.
Email: vadim.mogilevskii@gmail.com
Украина, Poltava

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Springer Science+Business Media, LLC, part of Springer Nature, 2018

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).