Boundary Integral Equation and the Problem of Diffraction by a Curved Surface for the Parabolic Equation of Diffraction Theory


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

The 2D problem of diffraction by a curved surface with ideal boundary conditions is considered in terms of the parabolic equation of diffraction theory. A boundary integral equation of Volterra type in Cartesian coordinates is introduced. Using the latter, the problem of diffraction by a parabola is analyzed. It is shown that the solution of this problem coincides with the asymptotic solution for the problem of diffraction by a cylinder obtained by V. A. Fock. The Efficiency of the numerical solution of the boundary integral equation is demonstrated for diffraction on a perturbation of a straight boundary.

Об авторах

A. Shanin

Moscow Lomonosov State University

Автор, ответственный за переписку.
Email: a.v.shanin@gmail.com
Россия, Moscow

A. Korolkov

Moscow Lomonosov State University

Email: a.v.shanin@gmail.com
Россия, Moscow

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Springer Science+Business Media, LLC, 2017

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).