On Possible Dimensions of Subspace Intersections for Five Direct Summands


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

The paper considers the problem on the dimensions of intersections of a subspace in the direct sum of a finite series of finite-dimensional vector spaces with sums of pairs of direct summands, provided that the subspace intersection with each of these direct summands is trivial. The problem naturally splits into finding conditions for the existence and representability of the corresponding matroid. The following theorem is proved: If the ranks of all the unions of a series of blocks satisfying the condition on the ranks of subsets in the matroid are given and the blocks have full rank, then this partial rank function may be extended to a full rank function for all the subsets of the base set (the union of all the blocks). Necessary and sufficient conditions on the dimensions of the direct summands and intersections mentioned above for the corresponding matroid to exist are obtained in the case of five direct summands. Bibliography: 5 titles.

Об авторах

N. Lebedinskaya

St.Petersburg State University

Автор, ответственный за переписку.
Email: n.lebedinskaya@spbu.ru
Россия, St.Petersburg

D. Lebedinskii

St.Petersburg State University

Email: n.lebedinskaya@spbu.ru
Россия, St.Petersburg

A. Smirnov

Mozhaisky Military Space Academy

Email: n.lebedinskaya@spbu.ru
Россия, St.Petersburg

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Springer Science+Business Media, LLC, 2017

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).