The Congruent Centralizer of a Block Diagonal Matrix


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Let a complex matrix A be the direct sum of its square submatrices B and C that have no common eigenvalues. Then every matrix X belonging to the centralizer of A has the same block diagonal form as the matrix A. This paper discusses how the conditions on the submatrices B and C should be modified for an analogous assertion about the congruent centralizer of A, which is the set of matrices X such that X*AX = A, to be valid. Also the question whether the matrices in the congruent centralizer are block diagonal if A is a block anti-diagonal matrix is considered. Bibliography: 2 titles.

Об авторах

Kh. Ikramov

Moscow Lomonosov State University

Автор, ответственный за переписку.
Email: ikramov@cs.msu.su
Россия, Moscow

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Springer Science+Business Media, LLC, 2017

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).