Homogenization Estimates in the Riemann–Hilbert Problem for the General Beltrami Equation on the Plane


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

We study homogenization for the Beltrami equation \( {A}_{\varepsilon }{u}_{\varepsilon}\equiv {\partial}_{\overline{z}}{u}_{\varepsilon }+{\mu}^{\varepsilon }{\partial}_z{u}_{\varepsilon }+{\nu}^{\varepsilon}\overline{\partial_z{u}_{\varepsilon }}=f \) with measurable ε-periodic coefficients με and νε, where ε is a small parameter. The coefficients of the equation satisfy the uniform ellipticity condition. The equation is considered in a bounded domain Ω of the complex plane with the Riemann–Hilbert condition on the boundary ∂Ω. For the resolvent \( {A}_{\varepsilon}^{-1} \) of this boundary value problem we obtain an approximation in the operator norm of the Sobolev space W1,2(Ω) with approximation error of order O(\( \sqrt{\varepsilon } \)).

Об авторах

S. Pastukhova

Moscow Technological University (MIREA)

Автор, ответственный за переписку.
Email: pas-se@yandex.ru
Россия, 78, pr. Vernadskogo, Moscow, 119454

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Springer Science+Business Media, LLC, 2017

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).