Homogenization Estimates in the Riemann–Hilbert Problem for the General Beltrami Equation on the Plane
- Авторы: Pastukhova S.E.1
-
Учреждения:
- Moscow Technological University (MIREA)
- Выпуск: Том 224, № 5 (2017)
- Страницы: 744-763
- Раздел: Article
- URL: https://journals.rcsi.science/1072-3374/article/view/239680
- DOI: https://doi.org/10.1007/s10958-017-3448-7
- ID: 239680
Цитировать
Аннотация
We study homogenization for the Beltrami equation \( {A}_{\varepsilon }{u}_{\varepsilon}\equiv {\partial}_{\overline{z}}{u}_{\varepsilon }+{\mu}^{\varepsilon }{\partial}_z{u}_{\varepsilon }+{\nu}^{\varepsilon}\overline{\partial_z{u}_{\varepsilon }}=f \) with measurable ε-periodic coefficients με and νε, where ε is a small parameter. The coefficients of the equation satisfy the uniform ellipticity condition. The equation is considered in a bounded domain Ω of the complex plane with the Riemann–Hilbert condition on the boundary ∂Ω. For the resolvent \( {A}_{\varepsilon}^{-1} \) of this boundary value problem we obtain an approximation in the operator norm of the Sobolev space W1,2(Ω) with approximation error of order O(\( \sqrt{\varepsilon } \)).
Об авторах
S. Pastukhova
Moscow Technological University (MIREA)
Автор, ответственный за переписку.
Email: pas-se@yandex.ru
Россия, 78, pr. Vernadskogo, Moscow, 119454
Дополнительные файлы
