The problem of shadow for domains in Euclidean spaces
- Авторы: Osipchuk T.M.1, Tkachuk M.V.1
-
Учреждения:
- Institute of Mathematics of the NAS of Ukraine
- Выпуск: Том 224, № 4 (2017)
- Страницы: 555-562
- Раздел: Article
- URL: https://journals.rcsi.science/1072-3374/article/view/239640
- DOI: https://doi.org/10.1007/s10958-017-3435-z
- ID: 239640
Цитировать
Аннотация
The problem of shadow generalized onto domains of the space ℝn, n ≤ 3, is investigated. The problem consists in the determination of the minimal number of balls satisfying some conditions such that every line passing through the given point intersects at least one ball of the collection. We have proved that it is sufficient to have four (two) mutually nonoverlapping closed or open balls in order to generate a shadow at every given point of any domain of the space ℝ3 (ℝ2). They do not include the point, and their centers lie on the domain boundary.
Ключевые слова
Об авторах
Tat’yana Osipchuk
Institute of Mathematics of the NAS of Ukraine
Автор, ответственный за переписку.
Email: otm82@mail.ru
Украина, Kiev
Maksim Tkachuk
Institute of Mathematics of the NAS of Ukraine
Email: otm82@mail.ru
Украина, Kiev
Дополнительные файлы
