On Variational Representations of the Constant in the Inf-Sup Condition for the Stokes Problem
- Авторы: Repin S.1
-
Учреждения:
- St. Petersburg Department of the Steklov, Mathematical Institute, St. Petersburg State Polytechnical University
- Выпуск: Том 224, № 3 (2017)
- Страницы: 456-467
- Раздел: Article
- URL: https://journals.rcsi.science/1072-3374/article/view/239623
- DOI: https://doi.org/10.1007/s10958-017-3428-y
- ID: 239623
Цитировать
Аннотация
Variational representations of the constant cΩ in the inf-sup condition for the Stokes problem in a bounded Lipschitz domain in ℝd, d ≥ 2, are deduced. For any pair of admissible functions, the respective variational functional provides an upper bound of cΩ and the exact infimum of it is equal to cΩ. Minimization of the functionals over suitable finite dimensional subspaces generates monotonically decreasing sequences of numbers converging to cΩ and, therefore, they can be used for numerical evaluation of the constant.
Об авторах
S. Repin
St. Petersburg Department of the Steklov, Mathematical Institute, St. Petersburg State Polytechnical University
Автор, ответственный за переписку.
Email: repin@pdmi.ras.ru
Россия, St. Petersburg
Дополнительные файлы
