Asymptotics of the Jordan Normal Form of a Random Nilpotent Matrix
- Авторы: Petrov F.V.1, Sokolov V.V.2
-
Учреждения:
- St. Petersburg Department of Steklov Institute of Mathematics
- St. Petersburg State Univeristy
- Выпуск: Том 224, № 2 (2017)
- Страницы: 339-344
- Раздел: Article
- URL: https://journals.rcsi.science/1072-3374/article/view/239577
- DOI: https://doi.org/10.1007/s10958-017-3419-z
- ID: 239577
Цитировать
Аннотация
We study the Jordan normal form of an upper triangular matrix constructed from a random acyclic graph or a random poset. Some limit theorems and concentration results for the number and sizes of Jordan blocks are obtained. In particular, we study a linear algebraic analog of Ulam’s longest increasing subsequence problem.
Об авторах
F. Petrov
St. Petersburg Department of Steklov Institute of Mathematics
Автор, ответственный за переписку.
Email: fedyapetrov@gmail.com
Россия, St. Petersburg
V. Sokolov
St. Petersburg State Univeristy
Email: fedyapetrov@gmail.com
Россия, St. Petersburg
Дополнительные файлы
