On the Generating Function of Discrete Chebyshev Polynomials
- Авторы: Gogin N.1, Hirvensalo M.1
-
Учреждения:
- Department of Mathematics and Statistics, University of Turku
- Выпуск: Том 224, № 2 (2017)
- Страницы: 250-257
- Раздел: Article
- URL: https://journals.rcsi.science/1072-3374/article/view/239540
- DOI: https://doi.org/10.1007/s10958-017-3410-8
- ID: 239540
Цитировать
Аннотация
We give a closed form for the generating function of the discrete Chebyshev polynomials. It is the MacWilliams transform of Jacobi polynomials together with a binomial multiplicative factor. It turns out that the desired closed form is a solution to a special case of the Heun differential equation, and that it implies combinatorial identities that appear quite challenging to prove directly.
Об авторах
N. Gogin
Department of Mathematics and Statistics, University of Turku
Автор, ответственный за переписку.
Email: ngiri@list.ru
Финляндия, Turku
M. Hirvensalo
Department of Mathematics and Statistics, University of Turku
Email: ngiri@list.ru
Финляндия, Turku
Дополнительные файлы
