The Computational Complexity of the Initial Value Problem for the Three Body Problem


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

The paper is concerned with the computational complexity of the initial value problem (IVP) for a system of ordinary dynamical equations. A formal problem statement is given, containing a Turing machine with an oracle for getting the initial values as real numbers. It is proven that the computational complexity of the IVP for the three-body problem is not bounded by a polynomial. The proof is based on the analysis of oscillatory solutions of the Sitnikov problem, which have a complex dynamical behavior. These solutions contradict the existence of an algorithm that solves the IVP in polynomial time. Bibliography: 12 titles.

Об авторах

N. Vasiliev

St.Petersburg Department of Steklov Institute of Mathematics, St.Petersburg Electrotechnical University

Автор, ответственный за переписку.
Email: vasiliev@pdmi.ras.ru
Россия, St.Petersburg

D. Pavlov

Institute of Applied Astronomy of the Russian Academy of Sciences

Email: vasiliev@pdmi.ras.ru
Россия, St.Petersburg

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Springer Science+Business Media New York, 2017

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).