Convolution Equations on a Large Finite Interval with Symbols Having Power-Order Zeros


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

A certain convolution equation is studied on a large finite interval. This equation arose in acoustics for description of a wave conductor surface with a bed of ice. The main feature of this equation is that the symbol of the corresponding operator has zeros of power order in the dual variable, so that the inverse operator is a long-range one. A complete power-order asymptotic expansion is constructed for the kernel of the inverse operator as the length of the interval tends to infinity.

Об авторах

A. Budylin

St.Petersburg State University

Автор, ответственный за переписку.
Email: a.budylin@spbu.ru
Россия, St. Petersburg

S. Levin

St.Petersburg State University

Email: a.budylin@spbu.ru
Россия, St. Petersburg

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Springer Science+Business Media New York, 2017

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).