Asymptotic Expansions of Eigenfunctions and Eigenvalues of the Steklov Spectral Problem in Thin Perforated Domains with Rapidly Varying Thickness and Different Limit Dimensions


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

We consider a Steklov spectral problem for an elliptic differential equation with rapidly oscillating coefficients for thin perforated domains with rapidly varying thickness. We describe asymptotic algorithms for the solution of problems of this kind for thin perforated domains with different limit dimensions. We also establish asymptotic estimates for eigenvalues of the Steklov spectral problem for thin perforated domains with different limit dimensions. For certain symmetry conditions imposed on the structure of thin perforated domain and on the coefficients of differential operators, we construct and substantiate asymptotic expansions for eigenfunctions and eigenvalues.

Об авторах

A. Popov

Shevchenko Kyiv National University

Автор, ответственный за переписку.
Email: popov256@gmail.com
Украина, Volodymyrs’ka Str., 64/13, Kyiv, 01601

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Springer Science+Business Media New York, 2017

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).