Block-Diagonal Similarity and Semiscalar Equivalence of Matrices
- Авторы: Shavarovskii B.Z.1
-
Учреждения:
- Pidstyhach Institute for Applied Problems in Mechanics and Mathematics, Ukrainian National Academy of Sciences
- Выпуск: Том 222, № 1 (2017)
- Страницы: 35-49
- Раздел: Article
- URL: https://journals.rcsi.science/1072-3374/article/view/239145
- DOI: https://doi.org/10.1007/s10958-017-3280-0
- ID: 239145
Цитировать
Аннотация
We determine the canonical form of a complex matrix B with respect to the similarity B → S−1BS, where S is the direct sum of invertible upper triangular Toeplitz blocks. The conditions necessary and sufficient for the semiscalar equivalence of one type of polynomial matrices are established.
Об авторах
B. Shavarovskii
Pidstyhach Institute for Applied Problems in Mechanics and Mathematics, Ukrainian National Academy of Sciences
Email: Jade.Santos@springer.com
Украина, Lviv
Дополнительные файлы
