On Convergence Rate in the Local Limit Theorem for Densities Under Various Moment Conditions


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

We refine certain estimates of convergence rate in the local central limit theorem for the densities of sums of independent identically distributed random variables possessing finite absolute moments up to the order 2 + δ, where δ is some number from the half-interval (0, 1]. Along with the uniform estimates we obtain non-uniform estimates of the first, second, and third order (for δ = 1), and the estimates in the Lp metrics. The obtained estimates have the form of the sum of two terms, the first of which is the Lyapunov fraction of the corresponding order with the coefficient depending only on δ, and the second one exponentially decays with the growth of the number of summands. The values of the coefficient in the Lyapunov fraction are considerably smaller than the known ones.

Об авторах

I. Shevtsova

Lomonosov Moscow State University and Institute of Informatics Problems of FRC IC RAS

Автор, ответственный за переписку.
Email: ishevtsova@cs.msu.ru
Россия, Moscow


© Springer Science+Business Media New York, 2017

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах