1-D Schrödinger Operators with Local Interactions on a Discrete Set with Unbounded Potential


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

We study spectral properties of the one-dimensional Schrödinger operators \( {\mathrm{H}}_{\mathrm{X},\alpha, \mathrm{q}}:=-\frac{{\mathrm{d}}^2}{\mathrm{d}{x}^2}+\mathrm{q}(x)+{\varSigma_x}_{{}_n}\in X{\alpha}_n\delta \left(x-{x}_n\right) \) with local interactions, d* = 0, and an unbounded potential q being a piecewise constant function, by using the technique of boundary triplets and the corresponding Weyl functions. Under various sufficient conditions for the self-adjointness and discreteness of Jacobi matrices, we obtain the condition of self-adjointness and discreteness for the operator HX,α,q.

Об авторах

Aleksandra Ananieva

Institute of Applied Mathematics and Mechanics, National Academy of Sciences of Ukraine

Автор, ответственный за переписку.
Email: ananeva89@gmail.com
Украина, Slavyansk

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Springer Science+Business Media New York, 2016

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).