Bargmann-Type Finite-Dimensional Reductions of the Lax-Integrable Supersymmetric Boussinesq Hierarchy and Their Integrability
- Авторы: Hentosh O.E.1
-
Учреждения:
- Pidstryhach Institute for Applied Problems in Mechanics and Mathematics, Ukrainian National Academy of Sciences
- Выпуск: Том 220, № 4 (2017)
- Страницы: 402-424
- Раздел: Article
- URL: https://journals.rcsi.science/1072-3374/article/view/238853
- DOI: https://doi.org/10.1007/s10958-016-3192-4
- ID: 238853
Цитировать
Аннотация
For the supersymmetric Boussinesq hierarchy connected with the Lax-type flows on the space dual to the Lie algebra of superintegrodifferential operators of one anticommuting variable for some nonself-adjoint superdifferential operator, we develop the method of Bargmann-type finite-dimensional reductions. We establish the existence of an exact even supersymplectic structure on the corresponding invariant finite-dimensional supersubspace of the supersymmetric Boussinesq hierarchy, as well as the Lax–Liouville integrability of commuting vector fields, generated by the hierarchy and reduced to this supersubspace.
Об авторах
O. Hentosh
Pidstryhach Institute for Applied Problems in Mechanics and Mathematics, Ukrainian National Academy of Sciences
Автор, ответственный за переписку.
Email: ohen@ua.fm
Украина, Naukova Str., 3B, Lviv, 79060
Дополнительные файлы
