Invariance, Quasi-Invariance, and Unimodularity for Random Graphs


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

We treat the probabilistic notion of unimodularity for measures on the space of rooted, locally finite, connected graphs in terms of the theory of measured equivalence relations. It turns out that the right framework for this consists in considering quasi-invariant (rather than just invariant) measures with respect to the root moving equivalence relation. We define a natural modular cocycle of this equivalence relation and show that unimodular measures are precisely those quasi-invariant measures whose Radon–Nikodym cocycle coincides with the modular cocycle. This embeds the notion of unimodularity into a very general dynamical scheme of constructing and studying measures with a prescribed Radon–Nikodym cocycle.

Об авторах

V. Kaimanovich

University of Ottawa

Автор, ответственный за переписку.
Email: vadim.kaimanovich@gmail.com
Канада, Ottawa, ON

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Springer Science+Business Media New York, 2016

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).