Circular Unitary Ensembles: Parametric Models and Their Asymptotic Maximum Likelihood Estimates


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Parametrized families of distributions for the circular unitary ensemble in random matrix theory are considered; they are connected to Toeplitz determinants and have many applications in mathematics (for example, to the longest increasing subsequences of random permutations) and physics (for example, to nuclear physics and quantum gravity). We develop a theory for the unknown parameter estimated by an asymptotic maximum likelihood estimator, which, in the limit, behavesas the maximum likelihood estimator if the latter is well defined and the family is sufficiently smooth. They are asymptotically unbiased and normally distributed, where the norming constants are unconventional because of long range dependence.

Об авторах

R. Dakovic

Georg-August-Universität

Email: mhd13@psu.edu
Германия, Göttingen

M. Denker

Pennsylvania State University

Автор, ответственный за переписку.
Email: mhd13@psu.edu
США, Philadelphia

M. Gordin

St.Petersburg Department of the Steklov Mathematical Institute

Email: mhd13@psu.edu
Россия, St.Petersburg

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Springer Science+Business Media New York, 2016

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).