Some Results of the Theory of Exponential R-Groups


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

This paper is devoted to the study of groups from the category M of R-power groups. We examine problems on the commutation of the tensor completion with basic group operations and on the exactness of the tensor completion. Moreover, we introduce the notion of a variety and obtain a description of abelian varieties and some results on nilpotent varieties of A-groups. We prove the hypothesis on irreducible coordinate groups of algebraic sets for the nilpotent R-groups of nilpotency class 2, where R is a Euclidean ring. We state that the analog to the Lyndon result for the free groups (see [10]) holds in this case, whereas the analog to the Myasnikov–Kharlampovich result fails.The paper is dedicated to partial R-power groups which are embeddable to their A-tensor completions. The free R-groups and free R-products are described with usual group-theoretical free constructions.

Об авторах

M. Amaglobeli

I. Javakhishvili Tbilisi State University

Автор, ответственный за переписку.
Email: mikheil.amaglobeli@tsu.ge
Грузия, Tbilisi

T. Bokelavadze

Akaki Tsereteli State University

Email: mikheil.amaglobeli@tsu.ge
Грузия, Kutaisi

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Springer Science+Business Media New York, 2016

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).