A Note on Mixture Representations for the Linnik and Mittag-Leffler Distributions and Their Applications*


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

We present some product representations for random variables with the Linnik, Mittag-Leffler, and Weibull distributions and establish the relationship between the mixing distributions in these representations. The main result is the representation of the Linnik distribution as a normal scale mixture with the Mittag-Leffler mixing distribution. As a corollary, we obtain the known representation of the Linnik distribution as a scale mixture of Laplace distributions. Another corollary of the main representation is the theorem establishing that the distributions of random sums of independent identically distributed random variables with finite variances converge to the Linnik distribution under an appropriate normalization if and only if the distribution of the random number of summands under the same normalization converges to the Mittag-Leffler distribution.

Об авторах

V. Korolev

Faculty of Computational Mathematics and Cybernetics, Moscow State University; Federal Research Center “Informatics and Control,” Russian Academy of Sciences

Автор, ответственный за переписку.
Email: vkorolev@cs.msu.ru
Россия, Moscow; Moscow

A.I. Zeifman

Vologda State University; Federal Research Center “Informatics and Control,” Russian Academy of Sciences

Email: vkorolev@cs.msu.ru
Россия, Vologda; Moscow

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Springer Science+Business Media New York, 2016

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).