On Accuracy of Long-Term Risk Forecasts by Normal Variance-Mean Mixtures Decomposition Algorithm*


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

This article provides an accuracy and applicability analysis of the approach to risk forecasting using parametric mixture models. The studied method is based upon results of the modified grid-based two-step decomposition algorithm for variance-mean mixtures. Instead of setting a fixed forecast interval, an approach is introduced to dynamically monitor relevant metrics for forecasts in a wide time frame, producing the basis for decision making regarding the quality and reliability of predictions for certain periods of time.

Об авторах

A.Yu. Korchagin

Lomonosov Moscow State University

Автор, ответственный за переписку.
Email: sasha.korchagin@gmail.com
Россия, Moscow

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Springer Science+Business Media New York, 2016

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).