On the Set of Locally Convex Topologies Compatible with a Given Topology on a Vector Space: Cardinality Aspects
- Авторы: Martín-Peinador E.1, Tarieladze V.2
-
Учреждения:
- Universidad Complutense de Madrid
- N. Muskhelishvili Institute of Computational Mathematics
- Выпуск: Том 216, № 4 (2016)
- Страницы: 577-579
- Раздел: Article
- URL: https://journals.rcsi.science/1072-3374/article/view/237844
- DOI: https://doi.org/10.1007/s10958-016-2917-8
- ID: 237844
Цитировать
Аннотация
For a topological vector space (X, τ), we consider the family LCT(X, τ) of all locally convex topologies defined on X, which give rise to the same continuous linear functionals as the original topology τ. We prove that for an infinite-dimensional reflexive Banach space (X, τ), the cardinality of LCT(X, τ) is at least \( \mathfrak{c} \).
Об авторах
E. Martín-Peinador
Universidad Complutense de Madrid
Автор, ответственный за переписку.
Email: em_peinador@mat.ucm.es
Испания, Madrid
V. Tarieladze
N. Muskhelishvili Institute of Computational Mathematics
Email: em_peinador@mat.ucm.es
Грузия, Tbilisi
Дополнительные файлы
