On Ergodic Decompositions Related to the Kantorovich Problem


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Let X be a Polish space, \( \mathcal{P} \)(X) be the set of Borel probability measures on X, and T : X → X be a homeomorphism. We prove that for the simplex Dom ⊆ \( \mathcal{P} \)(X) of all T -invariant measures, the Kantorovich metric on Dom can be reconstructed from its values on the set of extreme points. This fact is closely related to the following result: the invariant optimal transportation plan is a mixture of invariant optimal transportation plans between extreme points of the simplex. The latter result can be generalized to the case of the Kantorovich problem with additional linear constraints an the class of ergodic decomposable simplices.

Об авторах

D. Zaev

National Research University Higher School of Economics

Автор, ответственный за переписку.
Email: zaev.da@gmail.com
Россия, Moscow

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Springer Science+Business Media New York, 2016

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).