Asymptotically Efficient Importance Sampling for Bootstrap
- Авторы: Ermakov M.S.1
-
Учреждения:
- Institute of Mechanical Engineering Problems RAS
- Выпуск: Том 214, № 4 (2016)
- Страницы: 474-483
- Раздел: Article
- URL: https://journals.rcsi.science/1072-3374/article/view/237433
- DOI: https://doi.org/10.1007/s10958-016-2791-4
- ID: 237433
Цитировать
Аннотация
The Large Deviation Principle is proved for the conditional probabilities of moderate deviations of weighted empirical bootstrap measures with respect to a fixed empirical measure. Using this LDP for the problem of calculation of moderate deviation probabilities of differentiable statistical functionals, it is shown that the importance sampling based on influence function is asymptotically efficient.
Ключевые слова
Об авторах
M. Ermakov
Institute of Mechanical Engineering Problems RAS
Автор, ответственный за переписку.
Email: erm2512@mail.ru
Россия, St.Petersburg
Дополнительные файлы
