On an Inverse Problem for a One-Dimensional Two-Velocity Dynamical System


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

The evolution of the dynamical system under consideration is governed by the wave equation ρutt − (γux)x + Aux + Bu = 0, x>0, t > 0, with the zero initial Cauchy data and Dirichlet boundary control at x = 0. Here, ρ, γ, A, B are smooth 2 × 2–matrix-valued functions of x; ρ = diag {ρ1, ρ2} and γ = diag {γ1, γ2} are matrices with positive entries; u = u(x, t) is a solution (an ℝ2-valued function). In applications, the system corresponds to one-dimensional models, in which there are two types of wave modes, which propagate with different velocities and interact with each other. The “input→state” correspondence is realized by the response operator R : u(0, t) _→ γ(0)ux(0, t), t ≥ 0, which plays the role of inverse data. The representations for the coefficients A and B, which are used for their determination via the response operator, are derived. An example of two systems with the same response operator is given, where in the first system the wave modes do not interact, whereas in the second one the interaction does occur. Bibliography: 3 titles.

Об авторах

A. Pestov

St.Petersburg Department of the Steklov Mathematical Institute

Автор, ответственный за переписку.
Email: pestov@pdmi.ras.ru
Россия, St.Petersburg

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Springer Science+Business Media New York, 2016

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).