Homogenization of random functionals on solutions of stochastic equations
- Авторы: Granovski Y.I.1, Makhno S.Y.1
-
Учреждения:
- Institute of Mathematics of the NAS of Ukraine
- Выпуск: Том 214, № 2 (2016)
- Страницы: 186-199
- Раздел: Article
- URL: https://journals.rcsi.science/1072-3374/article/view/237355
- DOI: https://doi.org/10.1007/s10958-016-2768-3
- ID: 237355
Цитировать
Аннотация
The paper deals with an integral functional on a stationary random mixing field and on a solution of the stochastic equation which depend on a small parameter. The type of the functional is conditioned by the probabilistic representation of solutions of the Cauchy problem and the first boundaryvalue problem for a linear second-order parabolic equation in a nondivergent form with unbounded quick random oscillations of the zero-order term of the derivative. The central limit theorem of convergence of the functional is proved.
Об авторах
Yaroslav Granovski
Institute of Mathematics of the NAS of Ukraine
Автор, ответственный за переписку.
Email: yarvodoley@mail.ru
Украина, Kiev
Sergei Makhno
Institute of Mathematics of the NAS of Ukraine
Email: yarvodoley@mail.ru
Украина, Kiev
Дополнительные файлы
