An analog of the Schwartz theorem on spectral analysis on a hyperbolic plane
- Авторы: Volchkov V.V.1, Volchkov V.V.1
-
Учреждения:
- Donetsk National University
- Выпуск: Том 214, № 2 (2016)
- Страницы: 172-185
- Раздел: Article
- URL: https://journals.rcsi.science/1072-3374/article/view/237352
- DOI: https://doi.org/10.1007/s10958-016-2767-4
- ID: 237352
Цитировать
Аннотация
Let \( \mathbb{D} \) be an open unit disk in the complex plane. It is shown that every subspace in C(\( \mathbb{D} \)) invariant under weighted conformal shifts contains a radial eigenfunction of the corresponding invariant differential operator. This function can be expressed via the Gauss hypergeometric function and is a generalization of the spherical function on the disk \( \mathbb{D} \) which is considered as a hyperbolic plane with the corresponding Riemannian structure.
Ключевые слова
Об авторах
Valery Volchkov
Donetsk National University
Автор, ответственный за переписку.
Email: valeriyvolchkov@gmail.com
Украина, Donetsk
Vitaly Volchkov
Donetsk National University
Email: valeriyvolchkov@gmail.com
Украина, Donetsk
Дополнительные файлы
